
 
DATA MODELS FOR VIRTUAL REALITY 

 
 

Eng. Gabriel Felician Muresan – Continental Teves AG&Co OHG, 
e-mail: gabriel.muresan@contiteves.com 

Dr. Eng. Liana Stanescu – University of Craiova 
e-mail: stanescu@nt.comp-craiova.ro 

Dr. Eng. Dumitru Dan Burdescu – University of Craiova 
e-mail: burdescu@topedge.com 

 
Abstract:The scenes represented through Virtual reality are becoming bigger and bigger, with a 
considerable increase of the details level. The high quality images require long computation times 
and memory-consuming scene description. Parallel architectures with distributed memories are 
increasingly being used for rendering and provide more memory and CPU power .Ideally speaking, 
each object composing a scene can be independently processed, so a natural parallelization method is 
distributing the scene’s objects between the machine’s nodes. On the other hand, a more important 
part is the method one chooses to represent the data. Of course, this depends also on the 3D data to 
be represented and it varies from one case to the other. 
 
Keywords: VRML, virtual reality, data models. 
 
 
INTRODUCTION 
 
There are several possibilities in transforming a 
3D world into a database, but all of them are 
depending on the way the database is 
represented. 
For the 2 examples chosen in this article we 
chose the most popular of them – VRML 
(Virtual Reality Modelling Language). 
VRML is a file format for the interactive 
description of the 3D worlds and objects. VRML 
is designed to be used on the internet, intranet 
and locally. It is supposed to be an universal 
interchange format for multimedia and 3D 
graphics. An advantage is represented by the fact 
that the VRML standard (ISO/IEC 14772) is not 
defining the physical devices or any other 
implementation dependent concepts (e.g. screen 
resolution and input devices). 
The whole generality of descriptive language 
and its capability of running on any type of 
machine that has a web browser are making it a 
powerful candidate in winning the battle for the 
home-use virtual reality applications. Of course, 
depending on the application, the VRML files 
can have a more or less general format. 
In the first part of this article will be presented 
an application used for encoding the static 3D 
data and in the second part an application that is 
used for storing the animation in a VRML world. 
 
PART  I 
 
The application is done for a real-estate agency. 
It contains 2 modules and it’s used to describe 
the apartments in a region. 
There is a central database located on the server 
and written in SQL. 

The application is written in Visual Basic. 
Due to the fact that the application is working 
with 3D landscapes in which there are 
represented only apartments, these can be 
decomposed in the same type of primitives – 
parallelepipeds. 
In VRML these are represented through the 
following structure: 
 
 
Shape { 
 
   appearance Appearance { 
     material Material { 
      ambientIntensity  ambient_val 
      diffuseColor difcol_val1 difcol_val2  

difcol_val3 
      specularColor speccol_val1 speccol_val2 

 speccol_val3 
      emissiveColor  emiscol_val1 emiscol_val2 

 emiscol_val3 
      shininess shin_val 
      transparency transp_val 
     } 
   } 
  geometry Box { 

      size val1 val2 val3 
   } 
} 
 
 
This structure can be used for all the primitives 
used by the program. 
On this shape can be applied 3 transforms – 
rotation, translation and scaling. 
An example of an apartment designed for this 
application is given in Fig.1: 
 



 
Fig. 1 

 
Taking into account that this application is done 
for 3D we took into account also some 
predefined viewpoints. The general structure of a 
viewpoint is the following: 
 
DEF vp_name Viewpoint { 
     position poz1 poz2 poz3 
    orientation orient1 orient2 orient3 orient4 
    fieldOfView fov 
   description "viewpoint description" 
} 
 
Taking into account the above described 
primitives and the elements describing them we 
can build the database structure: 
 
Apartments 
id_aparta

ment 
id_mat

erial sizex sizey siz
ez trx try trz 

 
Viewpoint 

id_
ap 

id_
vp 

posi
tion

x 

posi
tion

y 

posi
tion

z 

orient
ation

x 

orien
tatio
ny 

orie
ntati
onz 

orien
tatio
nt 

field
OfVie

w 

descrip
tion 

 
Material 

id_
mat aInt dCo

lR 
dCo
lG 

dCo
lB 

sCol
R 

sC
olG 

sC
olB 

eC
olR 

eC
olG 

eC
olB

shi
n 

transp
arenc

y 
 
As it can be seen the structure is quite simple 
(ordinary we might add), but it’s efficiency is 
high (as it will be shown later on). 
 The application works as follows: the 
client makes a request t the server for apartments 
fulfilling certain characteristics. The server 
solves the request and returns the positions on 
the map where the apartments can be found. The 
client chooses one of the apartments, thus 
requesting supplementary information to the 
server in order to visualize the apartment. The 
server questions the database and takes the 
element corresponding to the chosen apartment 
and it constructs the VRML file from them. 
From now on we’ll call this part “decoding”. 

When a client wants to insert an apartment into 
the database, it sends the descriptive VRML file 
to the server. The server takes the file, it makes a 
linearization, decomposes it into primitives and 
inserts it into the database. We’ll call this part 
“encoding”. 
Taking into account that this article’s subject is 
not the client-server communication, we’ll 
further discuss only the encoding/decoding. 
In the encoding part, the VRML file should 
firstly be linearized. The object linearization 
means passing them from their reference system 
to the initial reference system. A virtual reality 
scene has the following structure: 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. A VR scene structure 
 
where n(k, i, j) represents an object and K is that 
object’s level, I is the level index and j is it’s 
parent index. 
After the linearization process, the internal 
structure of the VRML file is the following: 
 
 
 
 
 
 
 
 

Fig. 3. The linearized VR scene structure 
 
To describe the scene, after the linearization, the 
order in which the objects are drawn is not 
important anymore, taking into account that the 
objects are drawn in the initial reference system, 
not depending on the their parents (all the 
objects are on the same level of dependencies), 
so in the database is not necessary anymore a 
tuple to describe the father-child relationship. 
After the object linearization, the file is analysed 
and the data inserted into the database. 
For this purpose it was created the formal 
language and the grammar for the virtual reality 
scene. 
The decoding consists only in taking the 
parameters from the database and reconstructing 
the VRML file accordingly. 
One must notice that the reconstructed VRML 
file is directly linearized, but, as we mentioned 
before, this is not bringing out any change in the 
content of the virtual reality scene. 

Root 

n(1,1,1) n(1,2,1) n(1,k1,1)

n(2,1,1)

Root 

n(1,1,1) n(2,1,1) n(x1,x2,x3)



The system presents more advantages: firstly it 
offers a way of inserting 3D objects into a 
database and it gives a direction for future 
refining and extensions. 
On the other hand, although the VRML files are 
text files (so the space occupied by them is not 
too big), after inserting the data into the 
database, it’s space is dramatically decreased. 
According to the experimental data, after 
inserting one apartment into the database, the 
space allocated on the disc decreases with 65-
68%. 
After inserting the second apartment, the space 
decreases with 76-82%. Continuing the 
insertions, the limit will go up to 90% decrease 
of the space allocated for the data. 
 
 
Part  II 
 
 
This second part of the article will present an 
application that deals with the animation in a 
VRML scene. The animation occupies a lot of 
space in a file. 
The application describes the speeds of the 
wheels of a car during several manoeuvres. 
We are supposing that the car is equipped with 
the latest types of brake systems (ABS, TCS, 
ESP). 
Using the EZS200 simulation machine set on the 
RTS mode (real-time simulator) there were done 
a series of tests for the ABS, TCS, ESP and 
MASR manoeuvres on 2 real controllers – one 
for Audi TT and another one for BMW X5. For 
this purpose there are used protocol files in 
which there are described the signals that have to 
be measured during the simulation and the 
channel associated to each signal. To the 
simulator there was connected a real ECU 
(which is used in the car after the tests). 
After there was written a script for describing the 
manoeuvres that are to be done by the car. 
All the scripts were done in a language specific 
for the ZS2000 and were done for a 30 seconds 
time length. 
After downloading the script into the machine 
was downloaded the vehicle emulation data. 
To be noticed that the controller was used with 
all the software written inside. 
During the simulation the controller and the 
simulator are communicating using messages 
through a Control Area Network (CAN) used by 
all the car manufacturers. 
These messages contain the values of the signals 
written into the protocol files. 
After finishing the tests, the result files were 
taken and analysed with a special application – 
Datalyzer. 
In the figure below there is shown an ABS 
manoeuvre: 
 

 
Fig.4. An ABS manoeuvre for an Audi TT 

controller 
 

From this program the data were exported and 
after that inserted into a database. There are 2 
sampling rates for the controllers used (and 
provided by Continental Teves) – 10 
milliseconds and 7 milliseconds. So, for the 30 
seconds, we can have for each test either 3000 
records or 4285 records. For the 3D 
representation of the car movement there are 
important the wheel speeds, the forces on each of 
the wheels, the road model, the steering angle 
and the steering ratio. For the beginning the 
application is dealing only with the wheel speeds 
and there is taken into account the further 
development for inserting the other basic 
elements of a car movement. 
The application was done in C++ Builder and for 
representing the 3D objects it was used a Cosmo 
ActiveX provided by Silicon Graphics. The 
script for the 3D objects is done in VRML. 
In the following we’ll present a summary of the 
application and the main points in it’s 
implementation. In the figure below there is 
shown the ain form of the application: 
 

 
Fig. 5 The main form 

 
As it can be seen, the user is able to choose the 
vehicle type. After that all the tests available for 
this type of vehicle are taken from the database 
and loaded into the appropriate combo. Once the 



test is also chosen, all the available signals for 
this test will be displayed: 
 
void __fastcall TfrmSpeed::cmbTestChange(TObject 
*Sender) 
{ 
  clbSignals->Clear(); 
  String sSQL = "SELECT * FROM Signals WHERE Test= 
\'"+cmbTest->Text+"\'"; 
  qrySimulation->SQL->Clear(); 
  qrySimulation->SQL->Add(sSQL); 
  qrySimulation->Open(); 
  dtsSimulation->DataSet = qrySimulation; 
  while (!dtsSimulation->DataSet->Eof){ 
    clbSignals->Items->Add(dtsSimulation->DataSet-
>FieldByName("Signals")->AsString); 
    if (dtsSimulation->DataSet->FieldByName("Signals")-
>AsString == "Vel_fl") 
      clbSignals->Checked[clbSignals->Items->Count - 1]=1; 
    if (dtsSimulation->DataSet->FieldByName("Signals")-
>AsString == "Vel_fr") 
      clbSignals->Checked[clbSignals->Items->Count - 1]=1; 
    if (dtsSimulation->DataSet->FieldByName("Signals")-
>AsString == "Vel_rl") 
      clbSignals->Checked[clbSignals->Items->Count - 1]=1; 
    if (dtsSimulation->DataSet->FieldByName("Signals")-
>AsString == "Vel_rr") 
      clbSignals->Checked[clbSignals->Items->Count - 1]=1; 
    dtsSimulation->DataSet->Next(); 
  } 
  Ucp1->SRC = "example.wrl"; 
  return; 
} 
 
After all this the test has to be started. 
Taking into account the amount of data that has 
to be analysed and written into the VRML file, 
this process is taking up to 10 seconds, 
depending on the computer used. A part of the 
test looks like this: 
 

 
Fig. 6. A test example 

 
There are also shown in real-time the values of 
the signals that were selected from the list. For 
this purpose we used a timer which is working 
on a separate thread so that these values can be 
displayed. 
Taking into account the refresh rate which makes 
the human eye not to observe the changes we 
established the sampling rate to 200 
milliseconds. 
At the “OnTimer” event of the timer this makes 
the difference between the time elapsed from the 

last exit from this event and the actual time and 
depending on this it moves the positioning in the 
database to the corresponding values. Thus we 
are reducing as much as possible all the delays 
that can appear: 
 
void __fastcall TfrmSpeed::Timer1Timer(TObject *Sender) 
{ 
  Word h,m,s,j; 
  TDateTime timp1 = Now(); 
  TDateTime ElapsedTime = timp1-timp0; 
  DecodeTime(ElapsedTime,NULL,NULL,NULL,j); 
  timp0=timp1; 
  for (int i=0;i<j/10;i++){ 
    dtsSimulation->DataSet->Next(); 
    prbTest->Position++; 
  } 
  for (int i=0;i<nr_semnale-1;i++) 
    sgrValues->Cells[i][1]=dtsSimulation->DataSet-
>FieldByName(semnale[i])->AsString; 
  if (dtsSimulation->DataSet->Eof) { 
    Timer1->Enabled=0; 
    prbTest->Position=0; 
  } 
  return; 
} 
 
The most important part of the application is the 
creation of the VRML file. 
It has 2 types of components – mobile and fixed. 
The fixed part contains the central axe, the front 
and the rear axes and the 4 wheels. 
The mobile part of the VRML environment is 
formed by the 4 wheel speeds, each of them 
being composed by a cylinder that represents the 
magnitude of the speed and cone for the pointer 
representing the peak. 
The animation is realised using a scalar 
interpolator for the cylinder and a position 
interpolator for the cone, each of these being 
done for every wheel. 
After writing the points for the interpolators for 
each wheel and the time points for them there 
have to be written the routes so that the 
animation can take place. 
An example of the routes for one of the wheels is 
the following: 
 
ROUTE 
UnnamedTransformTranslationInterp_11.value_changed TO 
_Cyl1.set_translation 
ROUTE 
UnnamedTransformTranslationInterp_12.value_changed TO 
_Con1.set_translation 
ROUTE UnnamedTransformScaleInterp_13.value_changed 
TO _Cyl1.set_scale 
ROUTE UnnamedAnimation0Time_4.fraction_changed TO 
UnnamedTransformScaleInterp_7.set_fraction 
ROUTE UnnamedAnimation0Time_4.fraction_changed TO 
UnnamedTransformTranslationInterp_11.set_fraction 
UnnamedTransformTranslationInterp_17.set_fraction 
ROUTE UnnamedAnimation0Time_4.fraction_changed TO 
 
The space occupied by the tests on the disc is 
approx 1.5MB for each test file and for each 
VRML file containing a test is approx 2MB. 
On the other hand, when inserting a single test 
into the database, its dimension is 1.8MB, so 
between the space occupied by the tests values 
(which are meaningless without a visualization 



application) and the space used by a single 
VRML file to describe the test. However, when 
inserting more data, the ratio is in the database 
favour, i.e., for 12 tests the dimension of the 
database is approx 13MB. 
 
REFERENCES 

 
1. SP Reifenwerke - Bericht über den 

Reifenlasten, 1999 
2. Dirk Waldbauer - ABS 

Kurzbescreibung, 2000 
3. Dr. J. Karner – Automatische 

Programverifikation, 2002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. R. Gutwein, Wolfgang Kling – 
Software Dokumentation fur 
heckangetriebene Fahrzeuge – ABS 
Phasenerkennung, 1999 

5. R Gutwein – Yaw torque control, 1997 
6. R. Gutwein, W. Kling – Neue 

Arbitration, ABS-ESP, 1999 
7. R. Gutwein – ABS Druckmodel, 2000 
8. Ivo Bastic – Signalaufbereitung ABS, 

1999 
9. K. Roettger – TCS System, 2001 
10. VRML specification 

 


	Abstract:The scenes represented through Virtual reality are becoming bigger and bigger, with a considerable increase of the details level. The high quality images require long computation times and memory-consuming scene description. Parallel architectur
	
	
	
	INTRODUCTION



	PART  I
	Shape {
	DEF vp_name Viewpoint {
	Apartments


	Viewpoint
	
	Material


	Part  II
	
	
	REFERENCES





